Skip to main content

GIS 6005 - Module 6

 


Because the data provided for the above map contained positive and negative values which ArcMap does not support for proportional symbols, the data had to be modified. All states with positive values were exported to a new shapefile and the same was done with states with negative values. This was all that needed done with the positive valued states. However, for the negative valued states a new field needed added to the attribute table and it had to be populated with the absolute value of number of jobs lost to convert them to positive integers. 


To prepare the data for bivariate visualization classes needed to be made. To do this, three class quantification was applied to each desired variable to divide each into three relatively equal groups. Then all values in the first group of the first variable were classified with an 'A', then the second group was given a 'B', and the third was given a 'C'. the same thing was done with the second variable however 1, 2 , and 3 were used as the classification, Finally the classification fields were concatenated to A1, A2... ... C2, C3. Then the data was symbolized by the final created field and appropriate coloration was applied. 

Comments

Popular posts from this blog

Module 5 - Unsupervised and Supervised Image Classification

  This weeks module focused on classifying images using multispectral signatures. Above you can see the completed classified land cover of Germantown, Maryland. To create this image above signatures were collected that correlated to each required feature. Then bands were chosen (R:4 G:6 B:5) that contained the largest separation amongst features to minimize spectral confusion. In the above image roads and urban areas were often confused leading to a much larger area of roads than actually exist. The inset map contains a classification distance map which displays the distance each cell is (spectrally) from the sample points with brighter pixels being further than darker pixels. This indicates that brighter areas have a higher chance of error.

Lab 3: M 1.3 Assessment

 

Lab 2: M1.2 Standards

  The task for this module was to perform an accuracy assessment on two versions of the same road network in Albuquerque. One was mapped by the city of Albuquerque (yellow) and one by Street Map USA (red). In order to perform the accuracy assessment twenty points per network needed created at matching intersections on each network. Then a reference point was digitized based on satellite imagery to represent the "actual" location for each intersection. XY coordinates were assigned to all sixty of the created points and the values were exported to an excel spreadsheet. From there the RMSE for each of the networks were calculated using the reference points. With this the accuracy assessment was completed resulting in the following: ABQ_Streets Positional Accuracy: Tested 14.84 feet horizontal accuracy at 95% confidence level. StreetMapUSA Positional Accuracy: Tested 158.56 feet horizontal accuracy at 95% confidence level.