Skip to main content

GIS 6005 - Module 6

 


Because the data provided for the above map contained positive and negative values which ArcMap does not support for proportional symbols, the data had to be modified. All states with positive values were exported to a new shapefile and the same was done with states with negative values. This was all that needed done with the positive valued states. However, for the negative valued states a new field needed added to the attribute table and it had to be populated with the absolute value of number of jobs lost to convert them to positive integers. 


To prepare the data for bivariate visualization classes needed to be made. To do this, three class quantification was applied to each desired variable to divide each into three relatively equal groups. Then all values in the first group of the first variable were classified with an 'A', then the second group was given a 'B', and the third was given a 'C'. the same thing was done with the second variable however 1, 2 , and 3 were used as the classification, Finally the classification fields were concatenated to A1, A2... ... C2, C3. Then the data was symbolized by the final created field and appropriate coloration was applied. 

Comments

Popular posts from this blog

Lab 5: M 2.2 Interpolation

  This weeks module focused on identifying the best interpolation method for modeling the air quality over Tampa Bay. Four methods were tested using the same set of sample points Thiessen, Inverse Weighted Distance (IDW), Tensioned Spline (seen above), Regularized Spline. Thiessen Interpolation assigns all cells in the raster with the value of the nearest sample point. IDW calculates the value of all cells by considered multiple sample points nearby and giving closer points a higher weight than further points. Both Spline methods create a smooth surface over the sample points but the regularized version creates a smooth curvature regardless of the range of values in the sample meaning cell values can end up both above and below the minimum and maximum values found in the sample. The tension model attempts to fix this by constricted the curvature of values to the ranges found in the sample points.

Module 2 Lab: Land Use / Land Cover Classification, Ground Truthing and Accuracy Assessment

  The above map shows digitized land use/land cover (LULC) classifications for Pascagoula, MS. A set of 30 random sampling points were created post creation of the LULC layer and they were verified in google street view to determine accuracy. Based on these points the LULC model was found to be 86.6% accurate.

Applications in GIS Module 2

 This weeks module focused on using LiDAR data to determine the height and density of a section of Shenandoah National Forest in Virginia. Mostly this involved converting the LiDAR data to a raster and running various tools to achieve the desired datasets. New tools included LAS Dataset To Raster, LAS to MultiPoint, Con, Plus, Float, and Divide. Additionally a histogram was created to display the heights of cells in the forest. Density and DSM: Height with Graph: LiDAR: