This final lab focused on the way scale and spatial data aggregation can affect the quality of data. The resolution of raster data can greatly affect the variation seen in the final results, reducing the resolution tends to smooth out data resulting in more consistent results through generalization. Altering the scale of vector data can diminish the impact of data depending on the way it's aggregated. Specific data sets that may stand out on their own may be diminished when combined with larger areas making the final impact negligible, this is most famously seen in gerrymandering when political districts are redrawn, sometimes in outlandish fashion, in order to give a specific party a political advantage. This is done by splitting up areas that may contain high density of one party into areas that contain high densities of the opposing party, essentially negating the impact of the opposing votes. The outlandishness of the districts can be quantified using the Polsby-Poplar score which compares the shape of the district to a circle and returns a score between 0 and 1. 0 being the least compact and 1 being the most compact. Below can be seen an example of a district with a low Polsby-Poplar Score.
.
Comments
Post a Comment