Skip to main content

Applications in GIS Module 6A

 



The first part of this module focused on creating a suitability map for a property developer interested in purchasing property. The above map shows the results. For analysis Land cover, soils, slope, distance to streams, and distance to roads were the factors considered for suitability. Suitability was calculated either by reclassifying existing rasters, or creating new rasters and reclassifying to fit the given criteria. Then each reclassified raster was combined using the Weighted Overlay tool. The map on the left shows the results from using equal weights for each raster in the Weighted Overlay. The map on the right shows distributed weights as described in the map above. 

Comments

Popular posts from this blog

Module 5 - Unsupervised and Supervised Image Classification

  This weeks module focused on classifying images using multispectral signatures. Above you can see the completed classified land cover of Germantown, Maryland. To create this image above signatures were collected that correlated to each required feature. Then bands were chosen (R:4 G:6 B:5) that contained the largest separation amongst features to minimize spectral confusion. In the above image roads and urban areas were often confused leading to a much larger area of roads than actually exist. The inset map contains a classification distance map which displays the distance each cell is (spectrally) from the sample points with brighter pixels being further than darker pixels. This indicates that brighter areas have a higher chance of error.

Lab 5: M 2.2 Interpolation

  This weeks module focused on identifying the best interpolation method for modeling the air quality over Tampa Bay. Four methods were tested using the same set of sample points Thiessen, Inverse Weighted Distance (IDW), Tensioned Spline (seen above), Regularized Spline. Thiessen Interpolation assigns all cells in the raster with the value of the nearest sample point. IDW calculates the value of all cells by considered multiple sample points nearby and giving closer points a higher weight than further points. Both Spline methods create a smooth surface over the sample points but the regularized version creates a smooth curvature regardless of the range of values in the sample meaning cell values can end up both above and below the minimum and maximum values found in the sample. The tension model attempts to fix this by constricted the curvature of values to the ranges found in the sample points.

GIS 6005 - Module 4

  Above is a choropleth map of the population change percentage in North Dakota counties between 2010 and 2014. The colors were chosen to intuitively indicate bad (red) for population decline and good (blue) for a population increase. The legend patches were snapped together to give them an appearance of continuous color that mimic the continuous data in the dataset.