Skip to main content

M4 Lab: Data Classification



 



This weeks module was about the different methods of data classification. The lab was designed to take these methods and apply them to a choropleth map, or more specifically two presentations of four maps each. Each presentation containing one map of Natural Breaks, Equal Breaks, Quantile, and the Standard Deviation classification methods. The above maps display these methods by analyzing the senior citizen distribution in Miami Dade County, FL. The top map was created in ArcGIS Pro first, it displays the percentage of senior citizens in each census tract and shows how the data is displayed differently using each of the classification methods. The bottom map was created by saving a copy of the top map and changing each frame to show the total population of senior citizens per square mile. Once these were finished we were tasks with determining what each method hides or reveals and which presentation was most accurate. I believe the total population per square mile is the least misleading and should be used since the percentage doesn't take the total population of each tract into account. This means that a tract could have a higher percentage of senior citizens but a smaller total number of seniors and still show up as darker on the map. I believe the standard deviation method is the most reliable since classes don't get watered down and are purely displayed by how far from the average each tract is.



Comments

Popular posts from this blog

GIS 6005 - Module 6

  Because the data provided for the above map contained positive and negative values which ArcMap does not support for proportional symbols, the data had to be modified. All states with positive values were exported to a new shapefile and the same was done with states with negative values. This was all that needed done with the positive valued states. However, for the negative valued states a new field needed added to the attribute table and it had to be populated with the absolute value of number of jobs lost to convert them to positive integers.  To prepare the data for bivariate visualization classes needed to be made. To do this, three class quantification was applied to each desired variable to divide each into three relatively equal groups. Then all values in the first group of the first variable were classified with an 'A', then the second group was given a 'B', and the third was given a 'C'. the same thing was done with the second variable however 1, 2 ,...

GIS 6005 - Module 1

  General: General features were given large black font with a small white halo to increase legibility and visual contrast. The font size is the largest of any font on the relevant feature. The text was placed in a central location without overlapping other labeled features or important data. Water Features: Water features were given dark blue italic serif font. The color chosen was dark enough to allow legibility and contrast with the light blue water background.   For the Golden Gate and San Francisco Bay labels they are placed in a central location within the water feature at a level angle with the page. The Lake Merced label was angled to line up and be contained within the lake. Park Names: Park labels were given a dark green color with a thin white halo to allow visibility and contrast while still keeping the labels intuitive. Font size was chosen to keep the labels within the boundaries of the park. However, due to the shape of Lincoln Park the label overhangs how...

GIS Programming Module 4

  The below images are the output of the script for module 4 followed by the flowchart for the script. This module covered manipulating and editing data in feature class attribute tables. What you see below is the result of creating a new geodatabase, copying all shapefiles saved to the module 4 data folder to the new geodatabase, a search cursor identify the name, feature, and population of all New Mexico county seat cities populations. Finally it prints out a dictionary that has been populated with the county seat names and populations. Output: Flowchart: