Skip to main content

M2: Typography

 This module we were tasks with designing a map of Florida displaying major cities, swamps and rivers using proper cartographic elements and typographic principles. The majority of the lab involved placing and editing labels through the label property panel. If further editing was required than the convert to annotation tool was used. These annotation could be edited and warped as needed using the move and edit vertices tools. In addition, a requirement was to make three edits of our own to the map in an effort to develop our individual cartographic styles. I made many edits but the larger ones were changing the the symbology of the state capital as a yellow star which can be intuitively identified as a capital. I removed all cities and rivers that didn't require labels to reduce map clutter and I changed the color scheme of the Swamp and County layers so that the river labels were more easily visible.






Comments

Popular posts from this blog

Module 5 - Unsupervised and Supervised Image Classification

  This weeks module focused on classifying images using multispectral signatures. Above you can see the completed classified land cover of Germantown, Maryland. To create this image above signatures were collected that correlated to each required feature. Then bands were chosen (R:4 G:6 B:5) that contained the largest separation amongst features to minimize spectral confusion. In the above image roads and urban areas were often confused leading to a much larger area of roads than actually exist. The inset map contains a classification distance map which displays the distance each cell is (spectrally) from the sample points with brighter pixels being further than darker pixels. This indicates that brighter areas have a higher chance of error.

Lab 5: M 2.2 Interpolation

  This weeks module focused on identifying the best interpolation method for modeling the air quality over Tampa Bay. Four methods were tested using the same set of sample points Thiessen, Inverse Weighted Distance (IDW), Tensioned Spline (seen above), Regularized Spline. Thiessen Interpolation assigns all cells in the raster with the value of the nearest sample point. IDW calculates the value of all cells by considered multiple sample points nearby and giving closer points a higher weight than further points. Both Spline methods create a smooth surface over the sample points but the regularized version creates a smooth curvature regardless of the range of values in the sample meaning cell values can end up both above and below the minimum and maximum values found in the sample. The tension model attempts to fix this by constricted the curvature of values to the ranges found in the sample points.

GIS 6005 - Module 4

  Above is a choropleth map of the population change percentage in North Dakota counties between 2010 and 2014. The colors were chosen to intuitively indicate bad (red) for population decline and good (blue) for a population increase. The legend patches were snapped together to give them an appearance of continuous color that mimic the continuous data in the dataset.